Copied to
clipboard

G = C20.76C24order 320 = 26·5

23rd non-split extension by C20 of C24 acting via C24/C23=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.76C24, C4oD4.45D10, (D4xC10).26C4, C5:6(Q8oM4(2)), D4.Dic5:9C2, (Q8xC10).23C4, C4oD4.2Dic5, (C2xQ8).8Dic5, D4.9(C2xDic5), C4.75(C23xD5), C10.70(C23xC4), C5:2C8.34C23, (C2xD4).10Dic5, Q8.10(C2xDic5), (C2xC20).554C23, C20.157(C22xC4), (C22xC4).280D10, C4.Dic5:35C22, C4.20(C22xDic5), C2.11(C23xDic5), C23.11(C2xDic5), C22.2(C22xDic5), (C22xC20).289C22, (C2xC4oD4).9D5, (C5xC4oD4).8C4, (C5xD4).40(C2xC4), (C5xQ8).43(C2xC4), (C2xC20).309(C2xC4), (C2xC5:2C8):21C22, (C10xC4oD4).10C2, (C2xC4.Dic5):29C2, (C2xC4).31(C2xDic5), (C5xC4oD4).49C22, (C2xC4).635(C22xD5), (C22xC10).149(C2xC4), (C2xC10).130(C22xC4), SmallGroup(320,1491)

Series: Derived Chief Lower central Upper central

C1C10 — C20.76C24
C1C5C10C20C5:2C8C2xC5:2C8D4.Dic5 — C20.76C24
C5C10 — C20.76C24
C1C4C2xC4oD4

Generators and relations for C20.76C24
 G = < a,b,c,d,e | a20=c2=d2=e2=1, b2=a5, bab-1=a9, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=a10b, dcd=a10c, ce=ec, de=ed >

Subgroups: 494 in 258 conjugacy classes, 187 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2xC4, C2xC4, D4, Q8, C23, C10, C10, C2xC8, M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C20, C20, C2xC10, C2xC10, C2xC10, C2xM4(2), C8oD4, C2xC4oD4, C5:2C8, C2xC20, C2xC20, C5xD4, C5xQ8, C22xC10, Q8oM4(2), C2xC5:2C8, C4.Dic5, C22xC20, D4xC10, Q8xC10, C5xC4oD4, C2xC4.Dic5, D4.Dic5, C10xC4oD4, C20.76C24
Quotients: C1, C2, C4, C22, C2xC4, C23, D5, C22xC4, C24, Dic5, D10, C23xC4, C2xDic5, C22xD5, Q8oM4(2), C22xDic5, C23xD5, C23xDic5, C20.76C24

Smallest permutation representation of C20.76C24
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 55 6 60 11 45 16 50)(2 44 7 49 12 54 17 59)(3 53 8 58 13 43 18 48)(4 42 9 47 14 52 19 57)(5 51 10 56 15 41 20 46)(21 66 26 71 31 76 36 61)(22 75 27 80 32 65 37 70)(23 64 28 69 33 74 38 79)(24 73 29 78 34 63 39 68)(25 62 30 67 35 72 40 77)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 21)(17 22)(18 23)(19 24)(20 25)(41 77)(42 78)(43 79)(44 80)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(57 73)(58 74)(59 75)(60 76)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 62)(42 63)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(57 78)(58 79)(59 80)(60 61)
(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,55,6,60,11,45,16,50)(2,44,7,49,12,54,17,59)(3,53,8,58,13,43,18,48)(4,42,9,47,14,52,19,57)(5,51,10,56,15,41,20,46)(21,66,26,71,31,76,36,61)(22,75,27,80,32,65,37,70)(23,64,28,69,33,74,38,79)(24,73,29,78,34,63,39,68)(25,62,30,67,35,72,40,77), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,21)(17,22)(18,23)(19,24)(20,25)(41,77)(42,78)(43,79)(44,80)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,61), (41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,55,6,60,11,45,16,50)(2,44,7,49,12,54,17,59)(3,53,8,58,13,43,18,48)(4,42,9,47,14,52,19,57)(5,51,10,56,15,41,20,46)(21,66,26,71,31,76,36,61)(22,75,27,80,32,65,37,70)(23,64,28,69,33,74,38,79)(24,73,29,78,34,63,39,68)(25,62,30,67,35,72,40,77), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,21)(17,22)(18,23)(19,24)(20,25)(41,77)(42,78)(43,79)(44,80)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,61), (41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,55,6,60,11,45,16,50),(2,44,7,49,12,54,17,59),(3,53,8,58,13,43,18,48),(4,42,9,47,14,52,19,57),(5,51,10,56,15,41,20,46),(21,66,26,71,31,76,36,61),(22,75,27,80,32,65,37,70),(23,64,28,69,33,74,38,79),(24,73,29,78,34,63,39,68),(25,62,30,67,35,72,40,77)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,21),(17,22),(18,23),(19,24),(20,25),(41,77),(42,78),(43,79),(44,80),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(57,73),(58,74),(59,75),(60,76)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,62),(42,63),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(57,78),(58,79),(59,80),(60,61)], [(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)]])

74 conjugacy classes

class 1 2A2B···2H4A4B4C···4I5A5B8A···8P10A···10F10G···10R20A···20H20I···20T
order122···2444···4558···810···1010···1020···2020···20
size112···2112···22210···102···24···42···24···4

74 irreducible representations

dim111111122222244
type++++++---+
imageC1C2C2C2C4C4C4D5D10Dic5Dic5Dic5D10Q8oM4(2)C20.76C24
kernelC20.76C24C2xC4.Dic5D4.Dic5C10xC4oD4D4xC10Q8xC10C5xC4oD4C2xC4oD4C22xC4C2xD4C2xQ8C4oD4C4oD4C5C1
# reps168162826628828

Matrix representation of C20.76C24 in GL6(F41)

2300000
38250000
009000
000900
000090
000009
,
5240000
16360000
00015123
00017026
0094001
0005024
,
4000000
0400000
00092632
003202440
000010
00003640
,
4000000
0400000
00012927
00101132
0000920
00003732
,
100000
010000
0010035
0001026
0000400
0000040

G:=sub<GL(6,GF(41))| [23,38,0,0,0,0,0,25,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[5,16,0,0,0,0,24,36,0,0,0,0,0,0,0,0,9,0,0,0,15,17,40,5,0,0,1,0,0,0,0,0,23,26,1,24],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,32,0,0,0,0,9,0,0,0,0,0,26,24,1,36,0,0,32,40,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,29,11,9,37,0,0,27,32,20,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,35,26,0,40] >;

C20.76C24 in GAP, Magma, Sage, TeX

C_{20}._{76}C_2^4
% in TeX

G:=Group("C20.76C2^4");
// GroupNames label

G:=SmallGroup(320,1491);
// by ID

G=gap.SmallGroup(320,1491);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,1123,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=c^2=d^2=e^2=1,b^2=a^5,b*a*b^-1=a^9,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=a^10*b,d*c*d=a^10*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<